
CertiK Assessed on Jan 13th, 2025

KONET mainnet
Security Assessment

Executive Summary

Highlighted Centralization Risks

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

2 Major 2 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

2 Medium 2 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

3 Minor 3 Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

5 Informational 4 Resolved, 1 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY KONET MAINNET

CertiK Assessed on Jan 13th, 2025

KONET mainnet

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

POSDAO

ECOSYSTEM

OpenEthereum

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 01/13/2025

KEY COMPONENTS

N/A

CODEBASE
https://github.com/kon-mainnet/posdao-contracts

View All in Codebase Page

COMMITS
0315e8ee854cb02d03f4c18965584a74f30796f7

ff5efc589e70d5b1755537e2a0d3afd3508482f8

5d29eef28407c97c9c8a5b92fd701b4b2d26f643

View All in Codebase Page

Contract upgradeability Privileged role can mint tokens Fees are unbounded

12
Total Findings

9
Resolved

0
Mitigated

0
Partially Resolved

3
Acknowledged

0
Declined

https://github.com/kon-mainnet/posdao-contracts
https://github.com/kon-mainnet/posdao-contracts/commit/0315e8ee854cb02d03f4c18965584a74f30796f7
https://github.com/kon-mainnet/posdao-contracts/commit/ff5efc589e70d5b1755537e2a0d3afd3508482f8
https://github.com/kon-mainnet/posdao-contracts/commit/5d29eef28407c97c9c8a5b92fd701b4b2d26f643

TABLE OF CONTENTS KONET MAINNET

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Overview

Validator Set Module

Staking Module

Block Reward Module

Transaction Optimization Module

Governance Module

Randomness Module

External Dependencies

Addresses

Privileged Functions

Findings

CON-01 : Centralized Control of Contract Upgrade

GLOBAL-01 : Centralization Risks

CON-02 : Lack of Storage Gap in Upgradeable Contract

GOE-01 : Incorrect Usage of Equality Symbol `==`

CON-03 : Pull-Over-Push Pattern

CON-05 : Usage of `transfer()` for sending Ether

GOE-02 : Finalizing a Vote

CON-04 : Missing Emit Events

GOE-03 : Ballot Results

INI-01 : Deploying the Forked Project on Archived Platform

REI-01 : No Upper Limit in `setFee` function

UPG-01 : Unsafe Proxy Pattern

Appendix

TABLE OF CONTENTS KONET MAINNET

Disclaimer

TABLE OF CONTENTS KONET MAINNET

CODEBASE KONET MAINNET

Repository

https://github.com/kon-mainnet/posdao-contracts

Commit

0315e8ee854cb02d03f4c18965584a74f30796f7

ff5efc589e70d5b1755537e2a0d3afd3508482f8

5d29eef28407c97c9c8a5b92fd701b4b2d26f643

1f402761720694ad92c4b6f33b9ea57c6742fb6d

CODEBASE KONET MAINNET

https://github.com/kon-mainnet/posdao-contracts
https://github.com/kon-mainnet/posdao-contracts/commit/0315e8ee854cb02d03f4c18965584a74f30796f7
https://github.com/kon-mainnet/posdao-contracts/commit/ff5efc589e70d5b1755537e2a0d3afd3508482f8
https://github.com/kon-mainnet/posdao-contracts/commit/5d29eef28407c97c9c8a5b92fd701b4b2d26f643
https://github.com/kon-mainnet/posdao-contracts/tree/1f402761720694ad92c4b6f33b9ea57c6742fb6d

AUDIT SCOPE KONET MAINNET

96 files audited 7 files with Acknowledged findings 9 files with Resolved findings 80 files without findings

ID Repo File SHA256 Checksum

BAR

kon-

mainnet/posdao-

contracts

contracts/base/BlockRewardAuRaB

ase.sol

ded59605d8361fa57f945425146f854e98db5

6b9c3beb381b0f04b23f41b4f22

SAB

kon-

mainnet/posdao-

contracts

contracts/base/StakingAuRaBase.s

ol

2e51d8b0ca28273b10ebf853958c20458a78

ba93d8b8e2a1d10064dc920da666

TXE

kon-

mainnet/posdao-

contracts

contracts/base/TxPermissionBase.s

ol

3d1c75d9c70ce06a2e4a202d1ebf59b16b21c

8a158120998be116ef5864c4fe2

CET

kon-

mainnet/posdao-

contracts

contracts/Certifier.sol 27170325990c9aa1f64eed2bb5612b3e854e

55feebd84d76ce205b747cc88019

GOE

kon-

mainnet/posdao-

contracts

contracts/Governance.sol a7b60e2f3d0dd0afa9f4b59b55f71deb6b8992

401bb4f405466fa15e1c54c9da

INI

kon-

mainnet/posdao-

contracts

contracts/InitializerAuRa.sol
73a8b411814d6fba179512dd1e35064262ff1

c0270cfe6495ff6b0aa54f0714d

RAN

kon-

mainnet/posdao-

contracts

contracts/RandomAuRa.sol
ae94ef2380259f0c066aaa11d3b11c39fc5acf

412e5f7259ff87f6beb7ed468a

BAT

kon-

mainnet/posdao-

contracts

contracts/base/BlockRewardAuRaT

okens.sol

786e5a69d63e5ff3aed8255cf96deb8081495

1aced6181a70df03c7cb2d50be6

SRC

kon-

mainnet/posdao-

contracts

contracts/base/StakingAuRaCoins.s

ol

7889e852e335224a4ff8a43f693cbbdb3f8706

a6b2a59666cc372b9a846fb9ee

AUDIT SCOPE KONET MAINNET

ID Repo File SHA256 Checksum

SRT

kon-

mainnet/posdao-

contracts

contracts/base/StakingAuRaToken

s.sol

dbffb42149c41828a1b0209dc2922216b507d

68424dc2616679a8fc52f5263f7

ADM

kon-

mainnet/posdao-

contracts

contracts/upgradeability/AdminUpgr

adeabilityProxy.sol

f0aefc13447440d8805d97b2446e6b26e3bc0

216f6c2cc812fcde84d6a6ce63e

PRX

kon-

mainnet/posdao-

contracts

contracts/upgradeability/Proxy.sol
3d72095667402bb873f5e657505160ae4d20

a25bdecff3f025083c95fb1c81a1

ERB

kon-

mainnet/posdao-

contracts

contracts/ERC677BridgeTokenRew

ardable.sol

846e71f06324db1581d66018648d182330fa2

01b5ad5eca8dba742c7f225fdde

MIR

kon-

mainnet/posdao-

contracts

contracts/Migrations.sol 009565c035f8b841612dd99f5073b578c04a7

cba792b2d4de2809751a6cf1771

REI

kon-

mainnet/posdao-

contracts

contracts/Registry.sol
7e5df38054de82be25fabb86089fb0493a428

3d7df7f432dfb26b10d5adfecce

TPT

kon-

mainnet/posdao-

contracts

contracts/TxPriority.sol
cc5f4037c8264d433ff3e734a131a3292e98a

ae78f1235d791a75f802f8738cc

BRU

kon-

mainnet/posdao-

contracts

contracts/base/BanReasons.sol
025bcfbd6769471065bd250ab0742140c826

d12e9409b61bb8d5f4faf296bbe1

BRC

kon-

mainnet/posdao-

contracts

contracts/base/BlockRewardAuRaC

oins.sol

4f76402994ca3bf221aabf9ad807c880ce29b

bcafa25d9ce0034ddcea01b2418

TXR

kon-

mainnet/posdao-

contracts

contracts/base/TxPermissionV3.sol d054680eb848c682d06cf6a288c80f2467ded

23c584e13e4c852982d4ae549f6

TXM

kon-

mainnet/posdao-

contracts

contracts/base/TxPermissionV4.sol
abbf143902225573342cbe4a59d16307f595e

72241a0ed317de1c823aeaa16bc

AUDIT SCOPE KONET MAINNET

ID Repo File SHA256 Checksum

ADR

kon-

mainnet/posdao-

contracts

contracts/libs/Address.sol
d839610c9aba9e14646163932cc0c1924ae8

4abee7816c08d70e6bedbbb187ce

BPR

kon-

mainnet/posdao-

contracts

contracts/libs/BokkyPooBahsRedBl

ackTreeLibrary.sol

0db44cd6d8695237d31ffa112c20c7c022e58

ecb58b1423c9590fc7043af531e

SMU

kon-

mainnet/posdao-

contracts

contracts/libs/SafeMath.sol
374c8fd43329210c914c3daa7dc37fdc0df0a6

430274286af05b7189cabe75ac

BAP

kon-

mainnet/posdao-

contracts

contracts/upgradeability/BaseAdmin

UpgradeabilityProxy.sol

b22d12e70ea84efc9e03895a6d7471b2db22

968e05bfae3b942b7c6399d75929

BAG

kon-

mainnet/posdao-

contracts

contracts/upgradeability/BaseUpgra

deabilityProxy.sol

4431d79bb059dfdbb224fd7ca1735415c1ffaf

0d2c9e9f1c53044dfd9cf1581f

UAU

kon-

mainnet/posdao-

contracts

contracts/upgradeability/Upgradeab

ilityAdmin.sol

9d5c661b3866e0219e91640d449cfb9b7e4e

2f64c2e4ec04e39317dc36a43dc4

UPU

kon-

mainnet/posdao-

contracts

contracts/upgradeability/Upgradeab

ilityProxy.sol

0d3625b3297e043296dd55d6abc8e1ea5c50

933f6f9649d3e86546f1ecc9de5d

UOU

kon-

mainnet/posdao-

contracts

contracts/upgradeability/Upgradeab

leOwned.sol

4a3c67b3c485e4b92e34bfdae5b225347b77

4b7996c4a6d86b5c861c0f1e57d8

BLO

kon-

mainnet/posdao-

contracts

contracts/BlockRewardAuRa.sol 5de2db5c51451a8745958a14a325a5cb7cb0

bef49747ea2a4873abd74e717bc3

STA

kon-

mainnet/posdao-

contracts

contracts/StakingAuRa.sol 5595337851a42c319d0195d6273b250392d4

6e4620bac971243cf4ffff3a3b03

TMU

kon-

mainnet/posdao-

contracts

contracts/TokenMinter.sol
ab41337212b9c2ef77bdd47786a4ac201dc5

3457b47028d52624987c8efb3025

AUDIT SCOPE KONET MAINNET

ID Repo File SHA256 Checksum

TPH

kon-

mainnet/posdao-

contracts

contracts/TxPermission.sol
46599157e5c5dc0eb97c22f7c146db25fd9ffa

251d8ec143f1d44bb3f7a00773

VSR

kon-

mainnet/posdao-

contracts

contracts/ValidatorSetAuRa.sol
9db72699ef9cf97627cc0403b682c57e4b2ccf

95f72ba0f6e16cdaea417010fb

IBR

kon-

mainnet/posdao-

contracts

contracts/interfaces/IBlockRewardA

uRa.sol

0f48078ab8745425d134483ac56adad84fe0a

1912f094d34441ebe075848de34

IBA

kon-

mainnet/posdao-

contracts

contracts/interfaces/IBlockRewardA

uRaCoins.sol

c9bd8eadbfb62737eb84eae47179fb6ea7681

8fd11d5077a7771fbdb9118a048

IBT

kon-

mainnet/posdao-

contracts

contracts/interfaces/IBlockRewardA

uRaTokens.sol

bed345b82c4e9333f15d2cd040467723dd10

d142834ee3bc31f1f91f4f50d688

ICB

kon-

mainnet/posdao-

contracts

contracts/interfaces/ICertifier.sol
a580428db800f1bb77bff3059e0e5a0bfe821c

d57efca4d2d07f56e06904e48b

IER

kon-

mainnet/posdao-

contracts

contracts/interfaces/IERC677.sol
52ac95191bb4b842edd39a62944a033e3763

1c34bfb87e6cc436b58c1711345a

IGB

kon-

mainnet/posdao-

contracts

contracts/interfaces/IGovernance.s

ol

5fa2f8959349df8de37219e56409df457d88c9

3bfdb231296a61e25baec2e16c

IMR

kon-

mainnet/posdao-

contracts

contracts/interfaces/IMetadataRegis

try.sol

23cee29978d4623276e66477314ba112361b

77eb2fd768dcb4a42e89a02e5747

IOR

kon-

mainnet/posdao-

contracts

contracts/interfaces/IOwnerRegistr

y.sol

48a31257bc61353ebb037f58c0f2d333cdc88

c0d093f217c1fd4d8a918bf866f

IRA

kon-

mainnet/posdao-

contracts

contracts/interfaces/IRandomAuRa.

sol

95849f74cc6e6720e2fd6630b653ec3b7c1fdb

8478ee31e83b0ae7730fa03d2a

AUDIT SCOPE KONET MAINNET

ID Repo File SHA256 Checksum

IRR

kon-

mainnet/posdao-

contracts

contracts/interfaces/IReverseRegist

ry.sol

39434601fb6eeaa92a76bf2f30bf615c139e72

7c1ba2ae0a1759b30db00be6e6

ISA

kon-

mainnet/posdao-

contracts

contracts/interfaces/IStakingAuRa.s

ol

85c2c958d24de79b331b42e953996c655e42

fcc4e74fef4b3d42e41ea106aa4d

ISR

kon-

mainnet/posdao-

contracts

contracts/interfaces/IStakingAuRaT

okens.sol

05791739643206274c6335164a591fcd5764

46f55e683e843c73ad82f14f41e4

ITM

kon-

mainnet/posdao-

contracts

contracts/interfaces/ITokenMinter.so

l

cd8784c2c05453058d956d55b71d70651d6f

5e3d4fbde2b7c9cfdf3e8744f8b3

ITP

kon-

mainnet/posdao-

contracts

contracts/interfaces/ITxPermission.

sol

ca71772bb8976e308e1dbc414284e65be738

f1ee2590192a54417253ba626d2c

IVS

kon-

mainnet/posdao-

contracts

contracts/interfaces/IValidatorSetAu

Ra.sol

348e0262cc5a4eb9ccecf61b2c5ad86998571

49a8015b0b096e742e5b2868ec9

BRH

kon-

mainnet/posdao-

contracts

contracts/base/BanReasons.sol
025bcfbd6769471065bd250ab0742140c826

d12e9409b61bb8d5f4faf296bbe1

BAB

kon-

mainnet/posdao-

contracts

contracts/base/BlockRewardAuRaB

ase.sol

3fde6a339dec6a358f6c0a3d6f8639fbeb8e98

b0820340eb1210a218aebad9ce

RAC

kon-

mainnet/posdao-

contracts

contracts/base/BlockRewardAuRaC

oins.sol

4f76402994ca3bf221aabf9ad807c880ce29b

bcafa25d9ce0034ddcea01b2418

RAT

kon-

mainnet/posdao-

contracts

contracts/base/BlockRewardAuRaT

okens.sol

d8eff2de3702393f15b9301264ee6e5f027d28

ae9d64deba51a6fe236ff94f4f

SRB

kon-

mainnet/posdao-

contracts

contracts/base/StakingAuRaBase.s

ol

756dfe9863e9c4bdd47289b35137f70beef0a

c56b4d7da7c4b98811d5a7819c8

AUDIT SCOPE KONET MAINNET

ID Repo File SHA256 Checksum

ARC

kon-

mainnet/posdao-

contracts

contracts/base/StakingAuRaCoins.s

ol

7889e852e335224a4ff8a43f693cbbdb3f8706

a6b2a59666cc372b9a846fb9ee

ART

kon-

mainnet/posdao-

contracts

contracts/base/StakingAuRaToken

s.sol

33ccf49cbf43eaee66eb4a746f1884829d6a8

87cb8b3a4a6c06a0ac69c11fcfd

TXI

kon-

mainnet/posdao-

contracts

contracts/base/TxPermissionBase.s

ol

3e767cf08e136b78500a808dfa29ddf14336d

906cbec62556f49d46ee859680a

TXS

kon-

mainnet/posdao-

contracts

contracts/base/TxPermissionV3.sol d054680eb848c682d06cf6a288c80f2467ded

23c584e13e4c852982d4ae549f6

TXO

kon-

mainnet/posdao-

contracts

contracts/base/TxPermissionV4.sol abbf143902225573342cbe4a59d16307f595e

72241a0ed317de1c823aeaa16bc

IBL

kon-

mainnet/posdao-

contracts

contracts/interfaces/IBlockRewardA

uRa.sol

0f48078ab8745425d134483ac56adad84fe0a

1912f094d34441ebe075848de34

IBC

kon-

mainnet/posdao-

contracts

contracts/interfaces/IBlockRewardA

uRaCoins.sol

c9bd8eadbfb62737eb84eae47179fb6ea7681

8fd11d5077a7771fbdb9118a048

IRT

kon-

mainnet/posdao-

contracts

contracts/interfaces/IBlockRewardA

uRaTokens.sol

bed345b82c4e9333f15d2cd040467723dd10

d142834ee3bc31f1f91f4f50d688

ICU

kon-

mainnet/posdao-

contracts

contracts/interfaces/ICertifier.sol a580428db800f1bb77bff3059e0e5a0bfe821c

d57efca4d2d07f56e06904e48b

IEC

kon-

mainnet/posdao-

contracts

contracts/interfaces/IERC677.sol 52ac95191bb4b842edd39a62944a033e3763

1c34bfb87e6cc436b58c1711345a

IGU

kon-

mainnet/posdao-

contracts

contracts/interfaces/IGovernance.s

ol

5fa2f8959349df8de37219e56409df457d88c9

3bfdb231296a61e25baec2e16c

AUDIT SCOPE KONET MAINNET

ID Repo File SHA256 Checksum

IME

kon-

mainnet/posdao-

contracts

contracts/interfaces/IMetadataRegis

try.sol

23cee29978d4623276e66477314ba112361b

77eb2fd768dcb4a42e89a02e5747

IOW

kon-

mainnet/posdao-

contracts

contracts/interfaces/IOwnerRegistr

y.sol

48a31257bc61353ebb037f58c0f2d333cdc88

c0d093f217c1fd4d8a918bf866f

IRN

kon-

mainnet/posdao-

contracts

contracts/interfaces/IRandomAuRa.

sol

95849f74cc6e6720e2fd6630b653ec3b7c1fdb

8478ee31e83b0ae7730fa03d2a

IRE

kon-

mainnet/posdao-

contracts

contracts/interfaces/IReverseRegist

ry.sol

39434601fb6eeaa92a76bf2f30bf615c139e72

7c1ba2ae0a1759b30db00be6e6

IST

kon-

mainnet/posdao-

contracts

contracts/interfaces/IStakingAuRa.s

ol

85c2c958d24de79b331b42e953996c655e42

fcc4e74fef4b3d42e41ea106aa4d

IAT

kon-

mainnet/posdao-

contracts

contracts/interfaces/IStakingAuRaT

okens.sol

05791739643206274c6335164a591fcd5764

46f55e683e843c73ad82f14f41e4

ITO

kon-

mainnet/posdao-

contracts

contracts/interfaces/ITokenMinter.so

l

cd8784c2c05453058d956d55b71d70651d6f

5e3d4fbde2b7c9cfdf3e8744f8b3

ITX

kon-

mainnet/posdao-

contracts

contracts/interfaces/ITxPermission.

sol

ca71772bb8976e308e1dbc414284e65be738

f1ee2590192a54417253ba626d2c

IVA

kon-

mainnet/posdao-

contracts

contracts/interfaces/IValidatorSetAu

Ra.sol

348e0262cc5a4eb9ccecf61b2c5ad86998571

49a8015b0b096e742e5b2868ec9

ADE

kon-

mainnet/posdao-

contracts

contracts/libs/Address.sol d839610c9aba9e14646163932cc0c1924ae8

4abee7816c08d70e6bedbbb187ce

BPT

kon-

mainnet/posdao-

contracts

contracts/libs/BokkyPooBahsRedBl

ackTreeLibrary.sol

0db44cd6d8695237d31ffa112c20c7c022e58

ecb58b1423c9590fc7043af531e

AUDIT SCOPE KONET MAINNET

ID Repo File SHA256 Checksum

SMH

kon-

mainnet/posdao-

contracts

contracts/libs/SafeMath.sol
374c8fd43329210c914c3daa7dc37fdc0df0a6

430274286af05b7189cabe75ac

ADI

kon-

mainnet/posdao-

contracts

contracts/upgradeability/AdminUpgr

adeabilityProxy.sol

f41d3a87864a6aa0428f49f2a944f5ddf72db4

081f66057368e69acd4933da7e

BAA

kon-

mainnet/posdao-

contracts

contracts/upgradeability/BaseAdmin

UpgradeabilityProxy.sol

b22d12e70ea84efc9e03895a6d7471b2db22

968e05bfae3b942b7c6399d75929

BAD

kon-

mainnet/posdao-

contracts

contracts/upgradeability/BaseUpgra

deabilityProxy.sol

4431d79bb059dfdbb224fd7ca1735415c1ffaf

0d2c9e9f1c53044dfd9cf1581f

PRY

kon-

mainnet/posdao-

contracts

contracts/upgradeability/Proxy.sol 3d72095667402bb873f5e657505160ae4d20

a25bdecff3f025083c95fb1c81a1

UAH

kon-

mainnet/posdao-

contracts

contracts/upgradeability/Upgradeab

ilityAdmin.sol

9d5c661b3866e0219e91640d449cfb9b7e4e

2f64c2e4ec04e39317dc36a43dc4

UPH

kon-

mainnet/posdao-

contracts

contracts/upgradeability/Upgradeab

ilityProxy.sol

0d3625b3297e043296dd55d6abc8e1ea5c50

933f6f9649d3e86546f1ecc9de5d

UOH

kon-

mainnet/posdao-

contracts

contracts/upgradeability/Upgradeab

leOwned.sol

4a3c67b3c485e4b92e34bfdae5b225347b77

4b7996c4a6d86b5c861c0f1e57d8

BLC

kon-

mainnet/posdao-

contracts

contracts/BlockRewardAuRa.sol 5de2db5c51451a8745958a14a325a5cb7cb0

bef49747ea2a4873abd74e717bc3

CEI

kon-

mainnet/posdao-

contracts

contracts/Certifier.sol 27170325990c9aa1f64eed2bb5612b3e854e

55feebd84d76ce205b747cc88019

ERT

kon-

mainnet/posdao-

contracts

contracts/ERC677BridgeTokenRew

ardable.sol

5601e9428cbe8fbcf05cdee61c754a193dcd7

00c5f788395cfcb44c48785a1c0

AUDIT SCOPE KONET MAINNET

ID Repo File SHA256 Checksum

GOR

kon-

mainnet/posdao-

contracts

contracts/Governance.sol
6acbd6e963eb877ff4d77383502012322be0f

7a972dfdbb05f6202aef22edfcc

INA

kon-

mainnet/posdao-

contracts

contracts/InitializerAuRa.sol
73a8b411814d6fba179512dd1e35064262ff1

c0270cfe6495ff6b0aa54f0714d

MIA

kon-

mainnet/posdao-

contracts

contracts/Migrations.sol
945476ab90acc73693e4d2135c424676aea1

c932c06fde43a8c5b1869bf71e22

RAO

kon-

mainnet/posdao-

contracts

contracts/RandomAuRa.sol 6b94cec41e91e12357a62341ea2a5cdc7550

d55addcd8c090aa3481de633f8a8

RES

kon-

mainnet/posdao-

contracts

contracts/Registry.sol 8a7341acc44dfff2d95e6b6a8bfe7daed14437

969dc54e130fccd502aef1de7d

STI

kon-

mainnet/posdao-

contracts

contracts/StakingAuRa.sol
5595337851a42c319d0195d6273b250392d4

6e4620bac971243cf4ffff3a3b03

TMH

kon-

mainnet/posdao-

contracts

contracts/TokenMinter.sol
ab41337212b9c2ef77bdd47786a4ac201dc5

3457b47028d52624987c8efb3025

TPG

kon-

mainnet/posdao-

contracts

contracts/TxPermission.sol
46599157e5c5dc0eb97c22f7c146db25fd9ffa

251d8ec143f1d44bb3f7a00773

TPE

kon-

mainnet/posdao-

contracts

contracts/TxPriority.sol 92bc85f092dc48078f2cce0bfc8498080c71b7

f0067dc3d4339abf4ff603f264

VAR

kon-

mainnet/posdao-

contracts

contracts/ValidatorSetAuRa.sol 9db72699ef9cf97627cc0403b682c57e4b2ccf

95f72ba0f6e16cdaea417010fb

AUDIT SCOPE KONET MAINNET

APPROACH & METHODS KONET MAINNET

This report has been prepared for KONET to discover issues and vulnerabilities in the source code of the KONET mainnet

project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Formal Verification, Manual Review, and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS KONET MAINNET

REVIEW NOTES KONET MAINNET

Overview

KONET mainnet is a fork of the POSDAO smart contract suite, designed for deployment on the OpenEthereum network.

The system is implemented as a set of Solidity smart contracts that operate using a general-purpose BFT consensus

protocol, such as AuthorityRound (AuRa) with a leader and probabilistic finality, or Honeybadger BFT (HBBFT) with instant

finality. The algorithm incentivizes actors to behave in the best interests of the network by providing a Sybil control

mechanism for reporting and managing malicious validators, distributing block rewards, and maintaining the validator set.

Validator Set Module

ValidatorSetAuRa serves as the backbone of the smart contract system, integrating with all other modules to manage and

preserve the network's validator set. Here are its main functions and interactions with other modules:

Adds new candidate validators:

Retrieves staking information from the Staking module.

Utilizes randomness from the Randomness module for selecting new validator sets.

Triggered by the Block-Reward module to update validator and delegator statuses.

Enables validators to update their mining and staking addresses.

Deals with malicious validators:

Removes and bans validators through the Governance contract.

Staking Module

The Staking module facilitates staking and rewards distribution using ERC677 tokens and native tokens within a proof-of-

stake (PoS) blockchain network. It offers users the ability to register as validators by staking tokens into their own staking

pools or to participate as delegators by staking tokens into existing validator pools. For these staked validators/delegators,

the module enables claiming rewards and withdrawing their staked tokens. The involved contracts are:

StakingAuRaBase

StakingAuRaCoins

StakingAuRaTokens

ERC677BridgeTokenRewardable

Block Reward Module

The Block Reward module executes the essential logic for generating and distributing rewards according to users' staking

data. It collaborates with other contracts like "ValidatorSetAuRa" and "StakingAuRa" to manage the reward distribution

process and maintain the statuses of validators and delegators. The involved contracts are:

REVIEW NOTES KONET MAINNET

BlockRewardAuRaBase

BlockRewardAuRaCoins

BlockRewardAuRaTokens

ERC677BridgeTokenRewardable

TokenMinter

Transaction Optimization Module

This module defines allowed transaction types for a given sender based on various criteria, limits contract deployment

transaction sizes, sets a minimum gas price for specific senders, and manages priorities for specific transaction destinations.

It serves to regulate and restrict transaction usage within the network, enabling validators to set zero gas prices and

safeguarding the network against potential misuse while maintaining system integrity. The involved contracts are:

TxPermissionBase

TxPermissionV3

TxPermissionV4

Certifier

TxPriority

Registry

Governance Module

Governance provides a mechanism for validators to remove other validators from the validator set, either by voting to

remove them or by voting to remove and ban them. This can be useful if a validator is not performing their duties properly or

is acting maliciously.

Randomness Module

RandomAuRa contract provides a transparent and verifiable source of randomness to the consensus protocol. The random

seed generated by this contract can help ensure the fairness and unpredictability of the validator selection process.

External Dependencies

In KONET mainnet, the module inherits or uses a few of the depending injection contracts or addresses to fulfill the need of

its business logic. The scope of the audit treats third party entities as black boxes and assume their functional correctness.

However, in the real world, third parties can be compromised and this may lead to lost or stolen assets.

Addresses

The following addresses interact at some point with specified contracts, making them an external dependency. All of following

values are initialized either at deploy time or by specific functions in smart contracts.

BlockRewardAuRaBase:

REVIEW NOTES KONET MAINNET

_prevBlockRewardContract , validatorSetContract , stakingContract , _stakingContract .

BlockRewardAuRaTokens:

tokenMinterContract , stakingContract , erc677TokenContract , tokenContract , minterContract .

StakingAuRaBase:

validatorSetContract , governanceContract .

StakingAuRaCoins:

validatorSetContract , blockRewardContract , _to .

StakingAuRaTokens:

erc677TokenContract , validatorSetContract , blockRewardContract .

TxPermissionBase:

certifierContract , validatorSetContract .

BaseAdminUpgradeabilityProxy:

newImplementation .

UpgradeabilityProxy:

_logic .

Certifier:

validatorSetContract .

Governance:

validatorSetContract , stakingContract .

RandomAuRa:

validatorSetContract , stakingContract .

TokenMinter:

tokenContract .

REVIEW NOTES KONET MAINNET

We assume these contracts or addresses are valid and non-vulnerable actors and implementing proper logic to collaborate

with the current project.

Privileged Functions

In the KONET mainnet project, the privileged roles are adopted to ensure the dynamic runtime updates of the project, which

are specified in the following finding: Centralization Risks .

The advantage of those privileged roles in the codebase is that the client reserves the ability to adjust the protocol according

to the runtime required to best serve the community. It is also worth noting the potential drawbacks of these functions, which

should be clearly stated through the client's action/plan. Additionally, if the private keys of the privileged accounts are

compromised, it could lead to devastating consequences for the project.

To improve the trustworthiness of the project, dynamic runtime updates in the project should be notified to the community.

Any plan to invoke the aforementioned functions should be also considered to move to the execution queue of the

Timelock contract.

REVIEW NOTES KONET MAINNET

FINDINGS KONET MAINNET

This report has been prepared to discover issues and vulnerabilities for KONET mainnet. Through this audit, we have

uncovered 12 issues ranging from different severity levels. Utilizing the techniques of Formal Verification, Manual Review &

Static Analysis to complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

CON-01 Centralized Control Of Contract Upgrade Centralization Major Acknowledged

GLOBAL-01 Centralization Risks Centralization Major Acknowledged

CON-02
Lack Of Storage Gap In Upgradeable

Contract
Logical Issue Medium Resolved

GOE-01 Incorrect Usage Of Equality Symbol == Logical Issue Medium Resolved

CON-03 Pull-Over-Push Pattern Logical Issue Minor Resolved

CON-05 Usage Of transfer() For Sending Ether Volatile Code Minor Resolved

GOE-02 Finalizing A Vote Design Issue Minor Resolved

CON-04 Missing Emit Events Volatile Code Informational Resolved

GOE-03 Ballot Results Design Issue Informational Resolved

INI-01
Deploying The Forked Project On Archived

Platform
Volatile Code Informational Acknowledged

REI-01 No Upper Limit In setFee Function Logical Issue Informational Resolved

FINDINGS KONET MAINNET

12
Total Findings

0
Critical

2
Major

2
Medium

3
Minor

5
Informational

ID Title Category Severity Status

UPG-01 Unsafe Proxy Pattern Logical Issue Informational Resolved

FINDINGS KONET MAINNET

CON-01 CENTRALIZED CONTROL OF CONTRACT UPGRADE

Category Severity Location Status

Centralization Major

contracts/Certifier.sol (posdao-contracts): 10; contracts/Go

vernance.sol (posdao-contracts): 14; contracts/RandomAu

Ra.sol (posdao-contracts): 12; contracts/base/BlockRewar

dAuRaBase.sol (posdao-contracts): 20; contracts/base/Sta

kingAuRaBase.sol (posdao-contracts): 13; contracts/base/

TxPermissionBase.sol (posdao-contracts): 14

Acknowledged

Description

Based on the project organization and logic, these contracts listed below serve as implementation contracts, paired with

proxy contracts for contract upgrades. The admin role of the proxy contract holds the authority to update the

implementation contract behind it. Any compromise to the admin account may allow a hacker to take advantage of this

authority and change the implementation contract which is pointed by proxy and therefore execute potential malicious

functionality in the implementation contract.

List of contracts:

Certifier

Governance

RandomAuRa

BlockRewardAuRaBase

StakingAuRaBase

TxPermissionBase

Certifier

Governance

RandomAuRa

BlockRewardAuRaBase

StakingAuRaBase

TxPermissionBase

Recommendation

We recommend that the team make efforts to restrict access to the admin of the proxy contract. A strategy of combining a

time-lock and a multi-signature (⅔, ⅗) wallet can be used to prevent a single point of failure due to a private key

compromise. In addition, the team should be transparent and notify the community in advance whenever they plan to migrate

to a new implementation contract.

CON-01 KONET MAINNET

Here are some feasible short-term and long-term suggestions that would mitigate the potential risk to a different level and

suggestions that would permanently fully resolve the risk.

Short Term:

A combination of a time-lock and a multi signature (⅔, ⅗) wallet mitigate the risk by delaying the sensitive operation and

avoiding a single point of key management failure.

A time-lock with reasonable latency, such as 48 hours, for awareness of privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to a private key

compromised;

AND

A medium/blog link for sharing the time-lock contract and multi-signers addresses information with the community.

For remediation and mitigated status, please provide the following information:

Provide the deployed time-lock address.

Provide the gnosis address with ALL the multi-signer addresses for the verification process.

Provide a link to the medium/blog with all of the above information included.

Long Term:

A combination of a time-lock on the contract upgrade operation and a DAO for controlling the upgrade operation mitigate the

contract upgrade risk by applying transparency and decentralization.

A time-lock with reasonable latency, such as 48 hours, for community awareness of privileged operations;

AND

Introduction of a DAO, governance, or voting module to increase decentralization, transparency, and user

involvement;

AND

A medium/blog link for sharing the time-lock contract, multi-signers addresses, and DAO information with the

community.

For remediation and mitigated status, please provide the following information:

Provide the deployed time-lock address.

Provide the gnosis address with ALL the multi-signer addresses for the verification process.

Provide a link to the medium/blog with all of the above information included.

CON-01 KONET MAINNET

Permanent:

Renouncing ownership of the admin account or removing the upgrade functionality can fully resolve the risk.

Renounce the ownership and never claim back the privileged role;

OR

Remove the risky functionality.

Note: we recommend the project team consider the long-term solution or the permanent solution. The project team shall

make a decision based on the current state of their project, timeline, and project resources.

Alleviation

[KONET Team, June 21, 2024]: The team acknowledged the finding and decided not to change the current codebase. We

plan on using a timelock and multisig.

[CertiK, June 24, 2024]: CertiK strongly encourages the project team periodically revisit the private key security

management of all centralized roles and addresses.

[KONET Team, January 05, 2025]: The project team has carefully evaluated the risks associated with the admin authority of

the proxy contracts and has decided to proceed with the renunciation of the admin role. This decision reflects our

commitment to security, decentralization, and community trust. The commit details can be found in the following log:

https://github.com/kon-mainnet/posdao-contracts/commit/a322f3aa5fd99458ead9d985dd571a18b200fc00

[CertiK, January 05, 2025]: The team has introduced a renounceAdmin function in the latest commit

(a322f3aa5fd99458ead9d985dd571a18b200fc00). This function allows the owner to set the _owner address to the zero

address when necessary.

CON-01 KONET MAINNET

https://github.com/kon-mainnet/posdao-contracts/commit/a322f3aa5fd99458ead9d985dd571a18b200fc00
https://github.com/kon-mainnet/posdao-contracts/commit/a322f3aa5fd99458ead9d985dd571a18b200fc00

GLOBAL-01 CENTRALIZATION RISKS

Category Severity Location Status

Centralization Major Acknowledged

Description

In BlockRewardAuRaBase contract,

the role _ercToNativeBridgeAllowed has authority over the following functions:

addBridgeNativeRewardReceivers : Called by the erc-to-native bridge contract when a portion of

the bridge fee/reward should be minted and distributed to participants (validators and their delegators) in

native coins.

addExtraReceiver : Called by the erc-to-native bridge contract when the bridge needs to mint a

specified amount of native coins for a specified address using the reward function.

the role validatorSetContract has authority over the following functions:

clearBlocksCreated : Clears the values in the blocksCreated mapping for the current staking epoch

and a new validator set.

the role _admin has authority over the following functions:

initialize : Initializes the contract at network startup.

the role 0xffffFFFfFFffffffffffffffFfFFFfffFFFfFFfE has authority over the following functions:

reward : Called by the validator's node when producing and closing a block.

the role owner has authority over the following functions:

setErcToNativeBridgesAllowed : Sets the array of erc-to-native bridge addresses which are

allowed to call some of the functions with the onlyErcToNativeBridge modifier. This setter can only be

called by the owner .

In BlockRewardAuRaCoins contract,

the role validatorSetContract.stakingContract() has authority over the following functions:

transferReward : Called by the StakingAuRa.claimReward function to transfer native coins rom the

balance of the BlockRewardAuRa contract to the specified address as a reward.

GLOBAL-01 KONET MAINNET

In BlockRewardAuRaTokens contract,

the role _ercToErcBridgeAllowed and _nativeToErcBridgeAllowed have authority over the following functions:

addBridgeTokenRewardReceivers : Called by the erc-to-erc or native-to-erc bridge contract

when a portion of the bridge fee/reward should be minted and distributed to participants in staking

tokens.

the role owner has authority over the following functions:

setErcToErcBridgesAllowed : Sets the array of erc-to-erc bridge addresses which are allowed to

call some of the functions with the onlyXToErcBridge modifier.

setNativeToErcBridgesAllowed : Sets the array of native-to-erc bridge addresses which are

allowed to call some of the functions with the onlyXToErcBridge modifier.

setTokenMinterContract : Sets the address of the contract which will mint staking tokens.

the role validatorSetContract.stakingContract() has authority over the following functions:

transferReward : Called by the StakingAuRa.claimReward function to transfer tokens and native

coins from the balance of the BlockRewardAuRa contract to the specified address as a reward.

In StakingAuRaBase contract,

the role owner has authority over the following functions:

setCandidateMinStake : Sets (updates) the limit of the minimum candidate stake

(CANDIDATE_MIN_STAKE).

setDelegatorMinStake : Sets (updates) the limit of the minimum delegator stake

(DELEGATOR_MIN_STAKE).

initialValidatorStake : Makes initial validator stakes.

withdrawPortis : Temporary function to withdraw subsidized stake of Portis pool.

the role validatorSetContract has authority over the following functions:

incrementStakingEpoch : Increments the serial number of the current staking epoch.

removePool : Removes a specified pool from the pools array.

removePools : Removes pools which are in the _poolsToBeRemoved internal array from the pools

array.

setStakingEpochStartBlock : Sets the number of the first block in the upcoming staking epoch.

addUnremovableValidator : Temporary function to add an unremovable validator.

clearUnremovableValidator : Adds the unremovable validator to either the poolsToBeElected or

the poolsToBeRemoved array.

the role admin has authority over the following functions:

GLOBAL-01 KONET MAINNET

initialize : Initializes the network parameters.

In StakingAuRaTokens contract,

the role owner has authority over the following functions:

setErc677TokenContract : Sets the address of the ERC677 staking token contract.

the role erc677TokenContract has authority over the following functions:

onTokenTransfer : Stakes the sent tokens to the specified pool by the specified staker.

In TxPermissionBase contract,

the role owner has authority over the following functions:

addAllowedSender : Adds the address for which transactions of any type must be allowed.

removeAllowedSender : Removes the specified address from the array of addresses allowed to initiate

transactions of any type.

setDeployerInputLengthLimit : Sets the limit of input transaction field length in bytes for contract

deployment transaction made by the specified deployer.

setSenderMinGasPrice : Sets the min gas price allowed for a specified sender.

the role admin has authority over the following functions:

initialize : Initializes the network parameters.

In BaseAdminUpgradeabilityProxy contract, the role admin has authority over the following function:

changeAdmin : Changes the admin of the proxy.

upgradeTo : Upgrades the backing implementation of the proxy.

upgradeToAndCall : Upgrades the backing implementation of the proxy and call a function on the new

implementation.

In Certifier contract,

the role owner has authority over the following functions:

certify : Allows the specified addresses to use a zero gas price for their transactions.

revoke : Denies the specified addresses using a zero gas price for their transactions.

the role admin has authority over the following functions:

GLOBAL-01 KONET MAINNET

initialize : Initializes the contract at network startup.

In Ownable contract,

the role owner has authority over the following functions:

transferOwnership : Transfers ownership to a specified address.

renounceOwnership : Allows the current owner to renounce onwership.

the role pendingOwner has authority over the following function:

claimOwnership : Allows the newOwner to transfer control of the contract to a newOwner.

In MintableToken contract, the role owner has authority over the following function:

mint : Mints new tokens to a specified address.

In ERC677BridgeToken contract, the role owner has authority over the following function:

claimTokens : Allows the owner to claim tokens sent to the contract.

In ERC677MultiBridgeToken contract, the role owner has authority over the following functions:

addBridge : Adds a new bridge contract to the list of allowed bridges.

removeBridge : Removes an existing bridge contract from the list of allowed bridges.

In ERC677BridgeTokenRewardable contract,

the role owner has authority over the following functions:

setBlockRewardContract : Sets the address of the block reward contract.

setStakingContract : Sets the address of the staking contract.

the role blockRewardContract has authority over the following function:

mintReward : Mints new tokens as a reward.

the role stakingContract has authority over the following function:

stake : Transfers tokens from a staker to the staking contract.

In Governance contract,

GLOBAL-01 KONET MAINNET

the role stakingAddress has authority over the following functions:

create : Creates a new ballot for removing a validator from the validator set.

vote : Gives a vote for the specified ballot.

the role ballot creator has authority over the following function:

cancel : Cancels the specified ballot before its expiration.

the role admin has authority over the following functions:

initialize : Initializes the contract at network startup.

In Migrations contract, the role owner has authority over the following function:

setCompleted : Sets the last_completed_migration status.

upgrade : Upgrades the new migration address.

In RandomAuRa contract,

the role miningAddress has authority over the following functions:

commitHash : Called by the validator's node to store a hash and a cipher of the validator's number on

each collection round. The validator's node must use its mining address to call this function.

revealNumber : Called by the validator's node to XOR its number with the current random seed. The

validator's node must use its mining address to call this function.

revealSecret : The same as the revealNumber function (see its description).

the role blockRewardContract has authority over the following function:

onFinishCollectRound : Checks whether the current validators at the end of each collection round

revealed their numbers, and removes malicious validators if needed.

the role owner has authority over the following function:

setPunishForUnreveal : Changes the punishForUnreveal boolean flag.

the role validatorSetContract has authority over the following function:

clearCommit : Clears commit and cipher for the given validator's pool if the pool hasn't yet revealed

their number.

the role admin has authority over the following function:

initialize : Initializes the contract at network startup.

GLOBAL-01 KONET MAINNET

In Registry contract,

the role owner has authority over the following functions:

setOwner : Sets a new owner of the contract.

setFee : Sets the fee amount for reserving a name.

drain : Transfers the contract balance to the owner.

confirmReverseAs : Confirms the reverse registration of a name for a specified address.

the entries[_name].owner has authority over the following functions:

transfer : Transfers the ownership of a name to another address.

drop : Drops the ownership of a name and deletes the associated reverse registration.

setData : Sets a key-value pair of data associated with a _name .

setAddress : Sets an address value associated with a key for a _name .

setUint : Sets a uint value associated with a key for a _name .

proposeReverse : Proposes a reverse registration for a _name , specifying the address to be

associated with the name.

In TokenMinter contract,

the role owner has authority over the following functions:

addMinter : Adds a new minter address to the list of allowed minters.

removeMinter : Removes an existing minter address from the list of allowed minters.

claimTokens : Calls the claimTokens function of the token contract, allowing the owner to claim any

ERC20 tokens sent to the token contract

setBlockRewardContract : Sets the address of the block reward contract.

setBridgeContract : Calls the setBridgeContract function of the token contract, allowing the owner

to set the address of the bridge contract.

transferOwnership : Transfers the ownership of the TokenMinter contract to a new owner.

transferTokenOwnership : Calls the transferOwnership function of the token contract, allowing the

owner to transfer the ownership of the token contract.

the role minter has authority over the following function:

mint : Calls the mint function of the token contract to mint new tokens to a specified address.

the role blockRewardContract has authority over the following function:

mintReward : Mints new tokens to the block reward contract.

GLOBAL-01 KONET MAINNET

In TxPriority contract, the role owner has authority over the following functions:

setPriority : Sets transaction destination priority (weight).

removePriority : Removes a destination from the priority list.

setSendersWhitelist : Sets sender whitelist, an array of from addresses which have a top priority: if a whitelisted

address sends a transaction, this transaction should be mined before transactions defined by the setPriority

function.

setMinGasPrice : Sets an exclusive min gas price for the specified transaction destination.

removeMinGasPrice : Removes an exclusive min gas price for the specified transaction destination.

transferOwnership : Transfers ownership of the contract to the pendingOwner .

renounceOwnership : Allows the current owner to renounce onwership.

The role pendingOwner has authority over the following function:

claimOwnership : Allows the new owner to transfer control of the contract to a new owner.

In ValidatorSetAuRa contract,

the role admin has authority over the following functions:

addUnremovableValidator : Adds a validator to the list of unremovable validators.

addUnremovableValidators : Adds specified validators to the list of unremovable validators.

clearUnremovableValidator : Makes the non-removable validator removable.

initUnremovableValidators : Temporary function to initialize a new set of unremovable validators.

initialize : Initializes the network parameters.

the role stakingAddress has authority over the following function:

addPool : Binds a mining address to the specified staking address and vice versa, generates a unique

ID for the newly created pool, binds it to the mining/staking addresses, and returns it as a result.

the role SYSTEM_ADDRESS has authority over the following function:

finalizeChange : Called by the system when an initiated validator set change reaches finality and is

activated.

the role blockRewardContract has authority over the following functions:

newValidatorSet : Implements the logic which forms a new validator set.

the role randomContract has authority over the following function:

removeMaliciousValidators : Removes malicious validators.

the role Governance has authority over the following function:

GLOBAL-01 KONET MAINNET

removeValidator : Removes a validator from the validator set and bans its pool.

the pool owner has authority over the following functions:

changeMetadata : Changes pool's metadata (such as name and short description).

changeMiningAddress : Makes a request to change validator's mining address or changes the mining

address of a candidate pool immediately.

changeStakingAddress : Changes the staking address of a pool.

In AdminUpgradeabilityProxy contract, the role admin has authority over the following function:

renounceAdmin : Renounces the admin rights.

Any compromise to the privileged accounts may allow the hacker to take advantage of this authority, altering critical system

settings, transferring funds to the hacker's account, updating migration addresses, ultimately damaging the entire ecosystem.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

GLOBAL-01 KONET MAINNET

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[KONET Team, June 21, 2024]: The team acknowledged the finding and decided not to change the current codebase. We

plan on using a timelock and multisig.

[CertiK, June 24, 2024]: CertiK strongly encourages the project team periodically revisit the private key security

management of all centralized roles and addresses.

[KONET Team, January 05, 2025]: The project team has carefully evaluated the risks associated with the admin authority of

the proxy contracts and has decided to proceed with the renunciation of the admin role. This decision reflects our

commitment to security, decentralization, and community trust. The commit details can be found in the following log:

https://github.com/kon-mainnet/posdao-contracts/commit/a322f3aa5fd99458ead9d985dd571a18b200fc00

[CertiK, January 05, 2025]: The team has introduced a renounceAdmin function in the latest commit

(a322f3aa5fd99458ead9d985dd571a18b200fc00). This function allows the owner to set the _owner address to the zero

address when necessary.

GLOBAL-01 KONET MAINNET

https://github.com/kon-mainnet/posdao-contracts/commit/a322f3aa5fd99458ead9d985dd571a18b200fc00
https://github.com/kon-mainnet/posdao-contracts/commit/a322f3aa5fd99458ead9d985dd571a18b200fc00

CON-02 LACK OF STORAGE GAP IN UPGRADEABLE CONTRACT

Category Severity Location Status

Logical

Issue
Medium

contracts/Governance.sol (posdao-contracts): 14; contracts/RandomAu

Ra.sol (posdao-contracts): 12; contracts/base/TxPermissionBase.sol (p

osdao-contracts): 14

Resolved

Description

There is no storage gap preserved in the logic contract. Any logic contract that acts as a base contract that needs to be

inherited by other upgradeable child should have a reasonable size of storage gap preserved for the new state variable

introduced by the future upgrades.

Recommendation

We recommend having a storage gap of a reasonable size preserved in the logic contract in case that new state variables

are introduced in future upgrades. For more information, please refer to:

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps.

Alleviation

[KONET Team, July 09, 2024]: The team heeded the advice and resolved the issue in commits

848c539d37a4b3d4e6a97d6e23ac5b6e92bcee21 and 837bdac69e0e50db9710c73c5872b8031dd0a9c3 by putting storage

gaps in the above mentioned contracts.

CON-02 KONET MAINNET

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://github.com/kon-mainnet/posdao-contracts/commit/848c539d37a4b3d4e6a97d6e23ac5b6e92bcee21
https://github.com/kon-mainnet/posdao-contracts/commit/837bdac69e0e50db9710c73c5872b8031dd0a9c3

GOE-01 INCORRECT USAGE OF EQUALITY SYMBOL ==

Category Severity Location Status

Logical Issue Medium contracts/Governance.sol (posdao-contracts): 383 Resolved

Description

The equality symbol == is incorrectly used to set a variable to a value.

Recommendation

We recommend changing the equality symbol == to a single equals symbol = .

Alleviation

[KONET Team, June 21, 2024]: The team heeded the advice and resolved the issue in commit

ff5efc589e70d5b1755537e2a0d3afd3508482f8 by using = instead of == .

GOE-01 KONET MAINNET

https://github.com/kon-mainnet/posdao-contracts/commit/ff5efc589e70d5b1755537e2a0d3afd3508482f8

CON-03 PULL-OVER-PUSH PATTERN

Category Severity Location Status

Logical

Issue
Minor

contracts/ERC677BridgeTokenRewardable.sol (posdao-contracts): 335~3

36; contracts/TxPriority.sol (posdao-contracts): 54~59
Resolved

Description

In the Ownable and TxPriority contracts, when the transferOwnership() function changes the owner , it replaces the

previous owner with the new one without ensuring that the new owner can perform transactions on-chain. Consequently,

if the newly assigned owner is invalid, there is no way to revert back to the original owner.

Recommendation

We advise refactoring the linked codes as below:

address public pendingOwner;

function renounceOwnership() public onlyOwner {

 _owner = address(0);

 pendingOwner = address(0);

 emit OwnershipTransferred(_owner, address(0));

}

function transferOwnership(address newOwner) public onlyOwner {

 require(address(0) != newOwner, "pendingOwner set to the zero address.");

 pendingOwner = newOwner;

}

function claimOwnership() public {

 require(msg.sender == pendingOwner, "caller != pending owner");

 _owner = pendingOwner;

 pendingOwner = address(0);

 emit OwnershipTransferred(_owner, pendingOwner);

}

Alleviation

[KONET Team, July 09, 2024]: The team partially resolved this issue in commit

c13dbd239ef4bd6e42d6eef4569f49d3d3a33c7b by revising the related function in the ERC677BridgeTokenRewardable

contract. This issue still exists in the TxPriority contract.

CON-03 KONET MAINNET

https://github.com/kon-mainnet/posdao-contracts/commit/c13dbd239ef4bd6e42d6eef4569f49d3d3a33c7b

[KONET Team, January 05, 2025]: The ownership management functions have been enhanced and applied to the

TxPriority contract to address potential vulnerabilities. The commit details can be found in the following log.

https://github.com/poanetwork/posdao-contracts/commit/9dd5f40afb9368f8c06ab2e2799871a559f93a05

CON-03 KONET MAINNET

https://github.com/poanetwork/posdao-contracts/commit/9dd5f40afb9368f8c06ab2e2799871a559f93a05

CON-05 USAGE OF transfer() FOR SENDING ETHER

Category Severity Location Status

Volatile

Code
Minor

contracts/ERC677BridgeTokenRewardable.sol (posdao-contracts): 484; co

ntracts/Registry.sol (posdao-contracts): 237, 237; contracts/base/BlockRe

wardAuRaBase.sol (posdao-contracts): 1026; contracts/base/StakingAuRa

Coins.sol (posdao-contracts): 180

Resolved

Description

In the Registry contract, the drain function enables the contract owner to transfer the entire balance of the contract to its

own account. After EIP-1884 was included in the Istanbul hard fork, it is not recommended to use .transfer() or

.send() for transferring ether as these functions have a hard-coded value for gas costs making them obsolete as they are

forwarding a fixed amount of gas, specifically 2300 . This can cause issues in case the linked statements are meant to be

able to transfer funds to other contracts instead of EOAs.

Recommendation

We advise that the linked .transfer() and .send() calls are substituted with the utilization of the sendValue() function

from the Address.sol implementation of OpenZeppelin either by directly importing the library or copying the linked code.

Alleviation

[KONET Team, July 09, 2024]: The team resolved this issue in commit 6715acc88976228b3460c1469305fca76e909e3f by

adding the following function in their contract:

function sendValue(address payable recipient, uint256 amount) internal {

 require(address(this).balance >= amount, "Address: insufficient balance");

 // solhint-disable-next-line avoid-low-level-calls, avoid-call-value

 (bool success,) = recipient.call.value(amount)("");

 require(success, "Address: unable to send value, recipient may have

reverted");

 }

CON-05 KONET MAINNET

https://eips.ethereum.org/EIPS/eip-1884
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/87326f7313e851a603ef430baa33823e4813d977/contracts/utils/Address.sol#L37-L59
https://github.com/kon-mainnet/posdao-contracts/commit/6715acc88976228b3460c1469305fca76e909e3f#diff-3579d55f1ea85bbe0e06236275421f84e98afd945520c4138c2c4cb1a7b3543f

GOE-02 FINALIZING A VOTE

Category Severity Location Status

Design Issue Minor contracts/Governance.sol (posdao-contracts): 297~299 Resolved

Description

A vote can be finalized in the current staking epoch if the number of votes is at least the number of validators.

289 } else if (

290 IStakingAuRa(validatorSetContract.stakingContract()).stakingEpoch()

 == ballotStakingEpoch[_ballotId]

291) {

292 uint256 keepVotesCount = ballotVotesKeep[_ballotId];

293 uint256 removeVotesCount = ballotVotesRemove[_ballotId];

294 uint256 banVotesCount = ballotVotesBan[_ballotId];

295 uint256 validatorsLength = validatorSetContract.getValidatorsIds().

length;

296

297 if (keepVotesCount.add(removeVotesCount).add(banVotesCount) >=

 validatorsLength) {

298 return true;

However, the validator that a ballot is for is unable to vote in that ballot.

244 function vote(uint256 _ballotId, uint256 _choice) public {

245 require(ballotCreator[_ballotId] != 0);

246 uint256 senderPoolId = validatorSetContract.idByStakingAddress(msg.

sender);

247 require(validatorSetContract.isValidatorById(senderPoolId));

248 require(senderPoolId != ballotPoolId[_ballotId]);

This means that if a current validator is under a ballot, the only way for a vote to be finalized is after it has expired.

Recommendation

If this is not the intended design, a different threshold should be used for finalizing votes before expiration, such as at least

2/3 of all current validators have voted.

Alleviation

[KONET Team, June 21, 2024]: The team acknowledged the finding and decided not to change the current codebase.

GOE-02 KONET MAINNET

[KONET Team, January 05, 2025]:The issue has been addressed following the recommendations provided in the audit

report. The ballot finalization criteria have been updated to include a new threshold, allowing a ballot to be finalized if at least

2/3 of the validators have voted. This modification ensures efficient voting processes while maintaining strong consensus

among validators. The changes have been committed and implemented successfully.

https://github.com/kon-mainnet/posdao-contracts/commit/532614c629d2584c97b99aee0655ec60a18d91e6

GOE-02 KONET MAINNET

https://github.com/kon-mainnet/posdao-contracts/commit/532614c629d2584c97b99aee0655ec60a18d91e6

CON-04 MISSING EMIT EVENTS

Category Severity Location Status

Volatile

Code
Informational

contracts/ERC677BridgeTokenRewardable.sol (posdao-contracts):

867~868, 872~873; contracts/Migrations.sol (posdao-contracts): 16

~17, 20~21; contracts/RandomAuRa.sol (posdao-contracts): 149~1

50; contracts/base/BlockRewardAuRaBase.sol (posdao-contracts):

338; contracts/base/BlockRewardAuRaTokens.sol (posdao-contract

s): 86, 103~104, 123~124; contracts/base/StakingAuRaBase.sol (po

sdao-contracts): 456~457, 651, 658~659; contracts/base/StakingAu

RaTokens.sol (posdao-contracts): 205~206

Resolved

Description

There should always be events emitted in the sensitive functions that are controlled by centralization roles.

Function List:

setErcToNativeBridgesAllowed --

setErcToErcBridgesAllowed --

setNativeToErcBridgesAllowed --

setTokenMinterContract --

setStakingEpochStartBlock --

setCandidateMinStake --

setDelegatorMinStake --

setErc677TokenContract

setBlockRewardContract --

setStakingContract --

setCompleted --

upgrade --

setPunishForUnreveal --

Recommendation

It is recommended emitting events for the sensitive functions that are controlled by centralization roles.

Alleviation

CON-04 KONET MAINNET

[KONET Team, July 09, 2024]: The team resolved this issue in commit 6715acc88976228b3460c1469305fca76e909e3f by

emitting events for these functions.

CON-04 KONET MAINNET

https://github.com/kon-mainnet/posdao-contracts/commit/6715acc88976228b3460c1469305fca76e909e3f

GOE-03 BALLOT RESULTS

Category Severity Location Status

Design Issue Informational contracts/Governance.sol (posdao-contracts): 417~423 Resolved

Description

Currently, the result of a ballot is removal or ban if the number of removal, respectively ban, votes exceeds the other two

voting options.

417 if (removeVotesCount > banVotesCount) {

418 if (removeVotesCount > keepVotesCount) {

419 result = BALLOT_RESULT_REMOVE;

420 }

421 } else {

422 if (banVotesCount > removeVotesCount && banVotesCount >

 keepVotesCount) {

423 result = BALLOT_RESULT_BAN;

For example, if there is a situation where ban votes and remove votes are tied, but both are far larger than keep votes, then

the keep result is chosen.

Recommendation

If this is unintended, it is recommended to not have the lowest voting category be executed.

Alleviation

[KONET Team, January 05, 2025]: The identified issue has been resolved following the recommendation to prevent the

lowest voting category from being executed unintentionally.

Changes Made:

1. Updated Tie-Breaking Logic:

In the _calcBallotResult function, additional checks were added to ensure that the lowest voting category, such as keep, is

not selected in cases where remove and ban votes are significantly higher but tied.

The decision now defaults to a higher-priority option, such as ban or remove, ensuring fairness and logical consistency.

2. Threshold-Based Fallback:

Keep will only be selected when the total number of votes fails to meet the predefined threshold, adhering to the

recommendation.

GOE-03 KONET MAINNET

These changes address the reported issue while maintaining the integrity of the voting process. The updated logic ensures a

fair and predictable determination of ballot results, as described in commit

https://github.com/kon-mainnet/posdao-contracts/commit/1f402761720694ad92c4b6f33b9ea57c6742fb6d

GOE-03 KONET MAINNET

https://github.com/kon-mainnet/posdao-contracts/commit/1f402761720694ad92c4b6f33b9ea57c6742fb6d

INI-01 DEPLOYING THE FORKED PROJECT ON ARCHIVED
PLATFORM

Category Severity Location Status

Volatile Code Informational contracts/InitializerAuRa.sol (posdao-contracts): 16~17 Acknowledged

Description

This project is a fork of the POSDAO smart contract suites , which were written in Solidity version 0.5.10. It's important to

note that the original POSDAO contracts have not being updated or maintained for at least three years.

Although the OpenEthereum client supports POSDAO features, the repository was archived by its owner on May 24, 2022.

When deploying Solidity contracts version 0.5.10 on the archived OpenEthereum platform, several potential security

concerns arise:

1. Archived Platform: OpenEthereum is archived and lacks ongoing support and updates, potentially exposing

contracts to security risks due to unaddressed bugs or vulnerabilities. Limited community activity may lack timely

assistance or feedback on security issues.

2. Gas Price Considerations: OpenEthereum permits whitelisting of accounts for zero gas price transactions. Within

this suite of smart contracts, validators are designed and permitted to have a zero-value gas price. Prior to

deployment, thorough testing is essential to ensure the correct execution of the smart contracts' functionalities on

OpenEthereum.

3. Outdated Solidity Version: Solidity version 0.5.10 is relatively old and lacks the latest features, improvements, and

security enhancements introduced in newer versions. This may limit contract capabilities and security.

Recommendation

It's important to carefully consider the risks and trade-offs before deploying contracts on an archived platform like

OpenEthereum and to have contingency plans in place to handle any potential issues that may arise.

Alleviation

[KONET Team, July 09, 2024]: We will change client Openethereum to Nethermind which supports POSDAO contracts.

Our team admits that KONET Mainnet is maintained more than 3 years and legacy protocols and programs exists.

Archived Platform : migrate to Nethermin which is compatible openethereum and POSDAO. POSDAO contract will be

upgraded to solidity 0.8.x

Gas Price Considerations : After adopting new gas price model witch use KONE and erc-1559 we will use POSDAO with gas

consumption. originally validators are designed and permitted to have a zero-value gas price but our version need gas.

INI-01 KONET MAINNET

https://github.com/poanetwork/posdao-contracts/tree/master/contracts
https://github.com/openethereum/openethereum
https://openethereum.github.io/Permissioning#gas-price

Outdated Solidity Version : POSDAO contract will be upgraded to solidity 0.8.x

INI-01 KONET MAINNET

REI-01 NO UPPER LIMIT IN setFee FUNCTION

Category Severity Location Status

Logical Issue Informational contracts/Registry.sol (posdao-contracts): 226 Resolved

Description

In the Registry contract, the setFee function enables the owner to designate the fee variable, which serves as the

service fee for users accessing the reserve function. However, the fee setting lacks an upper limit. This means that it's

possisble to set the total fee rate to an arbitrary amount.

Recommendation

We recommend adding reasonable boundaries for the fee.

Alleviation

[KONET Team, July 09, 2024]: The team resolved this issue in commit 6715acc88976228b3460c1469305fca76e909e3f by

adding the following check:

 require(_amount <= 10000 ether, "should not be exceed more than 10,000

KONET");

REI-01 KONET MAINNET

https://github.com/kon-mainnet/posdao-contracts/commit/6715acc88976228b3460c1469305fca76e909e3f#diff-3579d55f1ea85bbe0e06236275421f84e98afd945520c4138c2c4cb1a7b3543f

UPG-01 UNSAFE PROXY PATTERN

Category Severity Location Status

Logical

Issue
Informational

contracts/upgradeability/AdminUpgradeabilityProxy.sol (posdao-co

ntracts): 11~12; contracts/upgradeability/Proxy.sol (posdao-contrac

ts): 65~66

Resolved

Description

The Proxy contract lacks a definition for the _willFallback() function, and proxy contracts inheriting from Proxy fail to

override this function. Consequently, there is no access control for the fall back function of AdminUpgradeabilityProxy

contract, allowing the proxy admin unrestricted interaction with the implementation contract:

function _willFallback() internal {

}

The absence of access control means that both the AdminUpgradeabilityProxy contract and the _logic contract may

share the same admin. While convenient, this setup poses a risk of function signature collisions, potentially rendering

functions on the implementation contract inaccessible to the admin. A more secure approach to the proxy pattern typically

involves assigning one admin for proxy upgrades and another for calling access-controlled functions on the implementation

contract.

Recommendation

To mitigate this risk, ensure that no functions in the implementation contract share the same signature as those in the proxy

contract. If this is not possible within the current codebase, consider the following:

 /**

 * @dev Only fall back when the sender is not the admin.

 */

 function _willFallback() internal {

 require(msg.sender != _admin(), "Cannot call fallback function from the proxy

admin");

 super._willFallback();

 }

Alleviation

[KONET Team, July 09, 2024]: The team resolved this issue in commit 5d29eef28407c97c9c8a5b92fd701b4b2d26f643 by

adding the following function in their contract:

UPG-01 KONET MAINNET

https://github.com/kon-mainnet/posdao-contracts/commit/5d29eef28407c97c9c8a5b92fd701b4b2d26f643

function _willFallback() internal {

 require(msg.sender != _admin(), "Cannot call fallback function from the proxy

admin");

 super._willFallback();

 }

UPG-01 KONET MAINNET

APPENDIX KONET MAINNET

Finding Categories

Categories Description

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX KONET MAINNET

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER KONET MAINNET

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER KONET MAINNET

Elevating Your Entire Web3 Journey

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

KONET mainnet Security Assessment CertiK Assessed on Jan 13th, 2025 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

